Vulnerability Name: | CVE-2020-15211 (CCN-188970) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assigned: | 2020-06-25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Published: | 2020-06-25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Updated: | 2021-09-16 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Summary: | In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don't expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CVSS v3 Severity: | 4.8 Medium (CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N) 4.2 Medium (Temporal CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N/E:U/RL:O/RC:C)
4.2 Medium (CCN Temporal CVSS v3.1 Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N/E:U/RL:O/RC:C)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CVSS v2 Severity: | 5.8 Medium (CVSS v2 Vector: AV:N/AC:M/Au:N/C:P/I:P/A:N)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vulnerability Type: | CWE-125 CWE-787 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vulnerability Consequences: | Bypass Security | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References: | Source: MITRE Type: CNA CVE-2020-15211 Source: SUSE Type: Mailing List, Third Party Advisory openSUSE-SU-2020:1766 Source: XF Type: UNKNOWN tensorflow-cve202015211-sec-bypass(188970) Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0 Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35 Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9 Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162 Source: MISC Type: Patch, Third Party Advisory https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859 Source: MISC Type: Third Party Advisory https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1 Source: CCN Type: TensorFlow Lite GIT Repository Out of bounds access in TFLite operators Source: CONFIRM Type: Exploit, Third Party Advisory https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45 Source: CCN Type: IBM Security Bulletin 6357195 (Watson Machine Learning Community Edition) Numerous CVE entires for TensorFlow in Watson Machine Learning Community Edition Source: CCN Type: IBM Security Bulletin 6364979 (Watson Discovery) IBM Watson Discovery for IBM Cloud Pak for Data affected by vulnerability in TensorFlow Source: CCN Type: IBM Security Bulletin 6434211 (Watson Machine Learning) Tensor Flow security vulnerabilities on IBM Watson Machine Learning on CP4D Source: CCN Type: IBM Security Bulletin 6445773 (Watson Machine Learning Server on-prem) Tensor Flow security vulnerabilities on IBM Watson Machine Learning Server Source: CCN Type: WhiteSource Vulnerability Database CVE-2020-15211 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vulnerable Configuration: | Configuration 1: Configuration 2: Configuration CCN 1: Denotes that component is vulnerable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oval Definitions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BACK |